BdlA, DipA and Induced Dispersion Contribute to Acute Virulence and Chronic Persistence of Pseudomonas aeruginosa
نویسندگان
چکیده
The human pathogen Pseudomonas aeruginosa is capable of causing both acute and chronic infections. Differences in virulence are attributable to the mode of growth: bacteria growing planktonically cause acute infections, while bacteria growing in matrix-enclosed aggregates known as biofilms are associated with chronic, persistent infections. While the contribution of the planktonic and biofilm modes of growth to virulence is now widely accepted, little is known about the role of dispersion in virulence, the active process by which biofilm bacteria switch back to the planktonic mode of growth. Here, we demonstrate that P. aeruginosa dispersed cells display a virulence phenotype distinct from those of planktonic and biofilm cells. While the highest activity of cytotoxic and degradative enzymes capable of breaking down polymeric matrix components was detected in supernatants of planktonic cells, the enzymatic activity of dispersed cell supernatants was similar to that of biofilm supernatants. Supernatants of non-dispersing ΔbdlA biofilms were characterized by a lack of many of the degradative activities. Expression of genes contributing to the virulence of P. aeruginosa was nearly 30-fold reduced in biofilm cells relative to planktonic cells. Gene expression analysis indicated dispersed cells, while dispersing from a biofilm and returning to the single cell lifestyle, to be distinct from both biofilm and planktonic cells, with virulence transcript levels being reduced up to 150-fold compared to planktonic cells. In contrast, virulence gene transcript levels were significantly increased in non-dispersing ΔbdlA and ΔdipA biofilms compared to wild-type planktonic cells. Despite this, bdlA and dipA inactivation, resulting in an inability to disperse in vitro, correlated with reduced pathogenicity and competitiveness in cross-phylum acute virulence models. In contrast, bdlA inactivation rendered P. aeruginosa more persistent upon chronic colonization of the murine lung, overall indicating that dispersion may contribute to both acute and chronic infections.
منابع مشابه
Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections.
Pseudomonas aeruginosa is a versatile opportunistic pathogen causing a wide variety of hospital-acquired acute infections in immunocompromised patients as well as chronic respiratory infections in patients suffering from cystic fibrosis or other chronic respiratory diseases. Several traits contribute to its ability to colonize and persist in the lungs of chronically infected patients, including...
متن کاملPseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells.
Pseudomonas aeruginosa can notably cause both acute and chronic infection. While several virulence factors are implicated in the acute phase of infection, advances in understanding bacterial pathogenesis suggest that chronic P. aeruginosa infection is related to biofilm formation. However, the relationship between these two forms of disease is not well understood. Accumulating evidence indicate...
متن کاملInactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favors persistence of oropharyngeal colonization in cystic fibrosis mice.
The inactivation of the mismatch repair (MMR) system of Pseudomonas aeruginosa modestly reduced in vitro fitness, attenuated virulence in murine models of acute systemic and respiratory infections, and decreased the initial oropharyngeal colonization potential. In contrast, the inactivation of the MMR system favored long-term persistence of oropharyngeal colonization in cystic fibrosis mice. Th...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملA Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infectio...
متن کامل